DATA CONVERSION:

The conversion of MicroSation cellsto Arc/Info
Symbology

by

Katherine E. Riegelmann and James R. Hoff
DYNTEL Corporation
3530 Manor Dr. Suite 4
Vicksburg, Mississippi
ph: (601) 634-2468, fax (601) 634-4584
email: riegel k@ex1.wes.army.mil

and

Edward A. Riegelmann
USAE Waterway Experiment Station
Tri-Service CADD/GIS Technology Center
3909 Halls Ferry Road
Vicksburg, Mississppi 39180
ph: (601) 634-2468, fax (601) 634-4584
email: riegee@ex1.wes.army.mil

THE CONVERSION OF MICROSTATION CELLS
TO ARC/INFO SYMBOLOGY

I ntroduction

The Tri-Service Spatial Data Standards (TSSDS)* have been designed
and implemented by the Tri-Service CADD/GIS Technology Center at the U.S.
Army Corps of Engineers Waterways Experiment Station, in Vicksburg,
Missssippi. The TSSDS were devel oped as a comprehensive master and
environmental planning data modd for Air Force, Army, and Navy ingtallation
projects. The standards address data content, classification, format, and
presentation of geospatial entities depicted in large scale mapping (primarily, 1
inch = 400 feet (1:4800) to 1 inch = 50 feet (1:600)). The TSSDS devel opment
program has defined a generic data model, based on the Spatial Data Transfer
Standards (SDTS - FIPS 173), that can be implemented on multiple
CADD/GIS platforms.

The need for standardization arises from the CADD/GIS community’ s
need to share data, such as drawings, attribute information and symbol ogy,
across CADD/GIS platforms. The TSSDS provide a variety of standardized
symbol ogy to be used across multiple platforms. These symbols were designed
and created in MicroStation and stored in avariety of cél libraries asthey relate
to the TSSDS. To avoid duplication of efforts, these symbols were converted
from MicroSation to AutoCAD and Arc/Info formats, respectively. And, asa
result, the symbols had to be customized to meet the AutoCAD and Arc/Info
requirements. The conversion of symbology from one platform to another isa
subject that has not been widely addressed by the CADD/GI S industry and
user community. Theintent of this paper isto provide guidance to the
CADD/GIS community on the conversion of symbology from a MicroStation
cdl library format to an Arc/Info markerset format.

Methodology
MicroStation?

MicroStation is a Computer-Aided Design and Drafting (CADD)
computer system that is used to input, store, retrieve, analyze, manipulate, and
present graphic and non-graphic data. MicroStation isused in civil,
mechanical, and other engineering design and architectural activities. This
system has interactive graphics capabilities and includes a variety of
engineering calculation and anaysis functions.

2

MicroStation design (.dgn) files, also referred to as IGDS (Interactive
Graphic Design Software) files, may contain any of 127 possible e ement
types. IGDSARC?, the Arc/Info command that initiates the conversion of
IGDSfiles, only trandates 11 of these 127 dement types. Trandatable
edementsinclude: cdl (2), line (3), line string (4), text (17), shape (6), text node
(7), curve (11), complex string (12), complex shape (14), dlipse (15), and arc
(16). The number beside the element typeis used as atrandation parameter in
Arc/Info’s | GDSARC command. An IGDSfile can have one, many, or all of
these dement types. IGDS dements are organized by layer or levels. Any
number of levels can be extracted to produce a coverage within Arc/Info based
on one, many, or al of these e ements.

Cdl Definition

Within MicroStation, e ements can be grouped into a single e ement
caled acdl. Célsare what Arc/Info would refer to as symbols or markers. A
cell isagroup of e ements combined into one complex element that describe a
symbol. Celsare stored in acdll library for use within the existing design file
aswedl as any other design file referencing the cdl library. Cells are used to
minimize redundancy, and standardize the use of frequently placed symbols.

Cdll Extraction from MicroStation

To place cdlsfrom acdl library into a MicroStation design (.dgn) file,
thereisautility available from the Intergraph Bulletin Board System called
Cdlplot.ma. Onceal celsare placed in asingle design (.dgn) file, the user can
create adesign (.dgn) file for EACH cdl, making the conversion to a symboal in
Arc/Info much easier.

In MicroStation, open the design (.dgn) filethat holds all the cells from
the cell library. To extract a cell one at atime, usethe PLACE BLOCK?
command. Thiscommand allows the user to put a*“block” around the cell of
choice. Arc/Info will read the boundaries of this“block” and producea TIC
and BND file based on those boundaries. To maintain the integrity of the cell, it
is necessary to place a“block” that isequal on each 5de, i.e, x =y. Thereisa
command in MicroStation called DX*=x,y, i.e dx = 1,-1 that allows the user to
place a“block” equally on each side. Oncethefirst point is placed, this
command can be executed to give the user a “square block”. To maintain
consistent scaling of the individual symbols, use the same “block” dimensions
asatemplatefor all symbols, which will ensure the consistency of the symbol
scal e between platforms.

It isimportant to note that if the cell containstext, (MicroStation
element 17), and the user intends on using that text as part of a symbol, the
user must breakdown the text into primitive dements, i.e. line (3), linestring

3

(4), shape (6), etc., to better manipulate them within the Arc/Info coverage.
Arc/Info WILL trandate dement text (17) and storeit in asub-class called
anno.igds within a coverage. Thetext will be placed in the anno.igds sub-class
of the coverage using the ANNOTEXT option during the use of the

| GDSARC?® command (see page 5). However, to store text within an Arc/Info
font library, anno.igdswill NOT beread. So, it becomes necessary to
breakdown the cdll into its primitive e ements so the text can be manipulated as
alinestring (4). The DROP COMPLEX SHAPE? command will breakdown
the elements as stated above. If the cdll does not contain text, the cell will be
saved within the design (.dgn) file as dement (2), and Arc/Info will trandate
the cell componentsto arcs.

If acdl isbroken down into its primitive dements and text (17)
exists, the DROPTEXT? command can be executed to decompose the
text into linestrings (4). Now a design (.dgn) file can be created with the
origina cdl’s primitive d ements. Thiswill allow Arc/Info to read the
coverage as arcs without text.

Note: Text can also be added to the symbol itself within the ArcPlot
session when creating the markerset. The text would reside within another layer
of the marker, making reference to a default textset or a custom designed textset.
How to manage the text isa user preference based upon an individua’ s plans
of how to organize the font libraries and the individual patterns.

Now that the “block” has been placed, execute the DROP COMPLEX
SHAPE and DROP TEXT asrequired. Next, isolate the e ements that were
“blocked” off soindividual design (.dgns) files can be produced for each
symbol. The PLACE FENCE? command creates a rectangle that is used to
select a set of elements. Once the user has defined the contents of the “fence’,
it isthen necessary to ACCEPT the “fence” contents and create a new design
(.dgn) file. The user will be prompted to accept or rgect the contents of the
fence. The user can place this new design (.dgn) filein the directory of choice,
i.e, ff=<path>/<file name>.dgn. Theresulting design (.dgn) file can now be
converted to an ARC/INFO coverage.

IGDSto ARC

Once the design (.dgn) file has been created, the IGDSINFO?
command can be executed from the ARC prompt. This command will break
down the elements of the design (.dgn) file and give the user a better
understanding of only those € ements needed to create a customized coverage.
This command provides a complete summary of eement types; the number of
elementsin each levd, color, line style and weight, and how often that ement
occursin the file. Unsupported elements will be flagged NOT SUPPORTED.

|GDSINFO <igds file>

After determining the structure of the IGDS design (.dgn) file, convert
the design (.dgn) file from MicroStation to Arc/Info by using the | GDSARC
command at the Arc prompt. See below.

Arc: IGDSARC <in_igds file> <out_cover> {2D|3D} {xmin} {ymin} {xmax} {ymax}
{OVERLAP | INSIDE} {text_width}

Usage for this command:
<in_igds file> - name of IGDSfile to be trand ated.

- name of the coverage to be created from theinput IGDSfile. The

<out_cover>
<out_cover> may contain any combination of points, lines or
annotation. An INFO file name <out_cover>.ACODE will be
created for IGDS attributes. An optional binary system file called
<out_cover>.alink will contain database pointers.
{2D | 3D} - specifies IGDS file to be two or three dimensional.
2D - two dimensional IGDS file (default).
3D - three dimensional IGDSfile.

{xmin} {ymin} {xmax} {ymax}

- desired coordinate range of e ementsto be trandated. Either all or
none of these values must be entered. The default isthe entire range
of the IGDSfile. IGDSINFO will display the x,y range of thefile.

when x and y range is specified.

{OVERLAP | INSIDE}

OVERLAP - all dementswhose bounding boxes overlap the specified X,y
range are extracted.
INSIDE - all dementswhose bounding boxes are completely inside the

specified x,y range are extracted.

width of the IGDS-TEXT item. The default will be 12 if no
text_width is given.

{text_width}

Upon entering the | GDSARC command, a dialog box will appear and
prompt the user for the IGDS-to-ARC conversion as follows:

Enter layer names and options (type END or $REST when done)

Enter 1<t layer and options:
Enter 2nd layer and options:

Hereisthe usage for the each response:

<layer_name | END | $REST> <level> <color> <line_style> <line_weight> <element
type> {cell_name} {option_1 ... option_n}

Wild cards (*) can be used in place of the above responses. Thewild card indicates that all
the elements associ ated with the chosen eement will be trandated provided they meet the

extraction criteria. Note: the user cannot leave empty fields; an integer or wild card must be
used.

Special Note: when entering layers and options the user has the following options:

<layer_name | END | $REST> - layer description.

layer _name - user defined
END - ends layer input.
$REST - allows the user to take all remaining layersthat have been

previoudy specified. Must bethelast layer specified, END
will not be needed. If $REST is not specified, remaining
layersWILL NOT betrandated. Totrandate ALL eement
types and include them in one coverage, usethe ALL option
i.e, SREST ALL.

Note: Typically, for the purposes of converting cellstoa
coverage, the SREST ALL function is adequate. It, again, is
auser preference asto how to extract elements and store them

<level> - levels range between 1 and 63.

<color> - colors range between 0 to 255.

<line_style> - line styles range between 0to 7.

<line_weight> - line weights are between 0 to 31.

<element_type> - thevalid e ement typesrange from 1to 127. Keepin

mind that only 11 elements types are trandated by
Ard/Info, as stated previoudly.

{cell name} - theremust be an entry hereif the dement typeis2;
otherwise thefield should be blank. If the SREST ALL
option is used no entry needs to be made. The cell
will be trandated to arcs.

{option_1...option_n} - the options here are many depending on the users needs
and desired output for the coverage.

Now that the coverageis created, it is not necessary to build topol ogy
for the coverage. Topology has no effect on the creation of FONTS,
PATTERNS, and MARKERSETS, and would only be neccessary to perform
gpatial analysis on the coverageitsdlf. Again, it depends upon the user’ s use of
the coverage.

Resulting from the execution of the | GDSARC command isan INFO data
file named <out_cover>. ACODE?, which holds the graphic attribution codes
from the IGDS design (.dgn) file. These codes can be used to perform relates and
joinsto the feature attribution tables as desired. The ACODE file can also be
used to manage symbology and store marker characteristics such as fonts and
pattern numbers. Within the ACODE fileis a graphic attribution code called
IGDS-TEXT. Itiswithin that field that the cell name from IGDS design (.dgn)
filecdl (2) is stored.

Editing the Coverage in ArcEdit

Once the coverage has been created using the | GDSARC command,
the coverage is ready to be edited within the ArcEdit session. When the
coverage (symbal) is drawn in ArcEdit, the coverage appears with a *“box”
around the desired coverage. This“box” isthe “block” that was placed around
the symbol (cdl) in MicroStation. Thisarc will need to be deleted unlessit is
part of the symbol itself.

If there is annotation within the symbol and the DROP COMPLEX
SHAPE and DROP TEXT commands were executed, the text will appear as
arcs and can be edited and manipulated as such.

During the execution of the | GDSARC command, BND and TIC files
were automatically created, based on the placement of the “block”. However,
the TIC ID’ s are not properly ordered when they appear in the ArcEdit session.
Each individual coverage (symbol), needs to be prepared for insertion into a
font library in the form of a pattern. During the ArcEdit session it is necessary
tore-calculatethe TIC ID’ sto their appropriate order prior to placingitina
font library. An error message will appear at the Arc prompt stating an error
has occured if the TIC ID’ s are not properly calculated. Arc/Info does not allow
TIC sto have the same value as another TIC at any time. The following
commands allow the user to add avalue of 10 to each TIC, making it easier to
re-calculate the TIC' sto their correct values:

EFTIC
SEL ALL
CALCULATE $ID=$ID + 10

Now each TIC will be numbered 11, 12, 13 and 14 respectively, and editing is
smplified. Now the TIC' s can be calculated to their proper order.

Example:

30 o4

Oncethe TIC sare calculated correctly, the arcs must ALSO be
properly calculated to reflect the desired output. To create specific symbols,
such as solid fill (also called pand fill) or singlelines, it is necessary to
calculate the User-1D’ s of the coverage arcs within the ArcEdit session. This
will determine how the arcs will be stored in the font library and pattern. If the
User-1D’sare not calculated to a value listed below, the font will not be read.
An error message will appear stating just that. Note: Within the ArcEdit
session, if an arcisto be calculated for solid fill, the arc must have only one
node. Sdlect all the arcs and use the UNSPL 1 T2 command to eliminate pseudo
nodes.

UNSPLIT <none| all>

If you want: TheUser-ID
(within the marker) must equal:
Singlelines 2
Fat-lines 6
Solid fill 7

Generalizing a Coverage

Because there are limitations to the amount of verticesthat can exist
within afont, it is necessary to use the ARC command GENERALIZE? to
weed out verticeswithin a coverage. A weed tolerance is based on the amount
of weed necessary. The vertex limitation per pattern is 1,000. Thereareonly a
total of 39,000 vertices allowed per font. ThisisaMAJOR limitation when
creating customized markers, especially when the user can have up to 127
PATTERNS per font. Coverages (patterns) that have alot of circles, curved
arcs and very dense arcs SHOULD be generalized. When alot of markers are
involved, and many fonts are being used, this command becomes very
necessary!

GENERALIZE <in_cover> <out_cover> {weed tolerance}

Creation of Fonts and Patterns

Now that a coverage exists, the appropriate ID’ s have been calcul ated,
and the coverage has been generalized (if necessary), the creation of fonts and
patterns begins. In order for a marker to be read within a markerset, each
marker must make reference to a font and a graphic pattern that represents
each symbol. A font organizes and stores patterns that have similar applications
and characterigtics. A pattern is stored within afont as a pattern cell and holds
graphic contents that are used in symbol layers.

In order for a marker to be drawn, the marker must exist in a font
library and be assigned to a pattern. The pattern acts asa*coverage” within afont
and can be manipulated as such. The ARCFONT? command is used to insart a
coverage into afont, and assign a pattern number. Thisis donewithin the
ARC session.

Once a pattern isin place within the font library, the user may find it
necessary to take that pattern back out and manipulateit. The FONTARC?
command allows the user to pull the pattern out of the font library as a coverage.
After the changes have been made to the pattern, the ARCFONT command
would be used again to return the pattern to the font library. Pattern numbers
can be overwritten or re-used for a different pattern.

ARCFONT <in_cover> <out_font> <out_pattern>
FONTARC <out_font> <pattern_number> <out_cover>

Todisplay afont library within the ArcPlot session, FONTDUMP?
allowsthe user to view the font and pattern prior to inserting a new oneinto the
font library. This should prevent overwriting of patterns and decrease confusion
asto what pattern numbers are available within that font library.

FONTDUMP <marker | line | shade> SCREEN
{start_pattern}{end_pattern}

It isimportant for the user to keep track of the font and pattern number.
Thiswill decrease the likdlihood of the user overwriting markersthat currently
exist. The handling of the fonts and patternsis a user preference and thereis no
set guiddine as to how to manage the font libraries. Often times font libraries
are grouped according to usage, for example, all utility markerswould exist in
onefont library.

Arc/Info providesfont libraries from 0 to 19, which includes various
styles of text, marker patterns, and line styles. Fonts 20 to 25 contain custom
patterns which can be altered or manipulated by copying them to alocal
workspace. Thisallows for the creation of additional font libraries. Fonts 26 to
40 can be created for further customization of symbol ogy.

Arc/Info searchesthe local directory first, so any customizing that is
done will be used first in place of the fontsin the IGL directory, unless
otherwise indicated.

The FONTCREATE? command at the ARC prompt initiates the
creation of additional fonts. Customized fonts should be placed in either the
users local workspace, the SARCHOME/igl63exe/FNT<#> directory, or both.

When ARC is executed, the customized fonts will automatically be
made available for use within the work session.

FONTCREATE {xmin}{ymin}{xmax}{ymax}

Creation of Arc/Info Markersets

Now that the coverage has been placed into afont and assigned a
pattern number, creation of a customized markerset begins. Within the ArcPlot
session the font and the markerset are associated with one another.

Markersets can contain up to 999 symbols. The user needsto keepin
mind that the default symbol sets, i.e, Plotter.mrk, Carto.mrk, etc., use marker-
symbols 1 to 100. To avoid confusion, it may be easier to start a new markerset
beginning with 101. Thiswill diminate the tendency to overwrite existing
markers.

To initiate the creation of a new markerset, the default markerset must
be cleared, or it will be read into the selected markerset. In the ArcPlot
session use the MARKERDELETE? command. Note: The
MARKERDELETE command can also be used to delete a specific symbol if
indicated.

MARKERDELETE <symbol | all>

A new markerset can be created by using the MARKERSAVE?
command. The use of thiscommand will create an empty markerset to hold
new markers. Note: The MARKERSAVE command is also used to save an
already existing markerset.

MARKERSAVE <new_markerset.nrk>

The new markerset needs to be sdlected with the MARKERSET?
command. This command designates the markerset created by using the
MARKERSAVE command above.

MARKERSET <markerset.mrk>

10

A font must be designated with the MARKERFONT?® command, and
the pattern with the MARKERPATTERN?® command.

MARKERFONT <font_number>
MARKERPATTERN <pattern_number>

Marker color, size, angle, offset, pen, for example, aswell as other
marker characterigtics, can be added to the marker depending on the user’s
desired output.

As stated previoudly, text can be added to a symbol using default
textsets or custom designed textsets by creating additional layers within the
marker. The MARKERLAYER?® command allows for multiple layers within
one marker. MARKERLAYER specifies which layer in the currently selected
marker will be affected by any changes. Placing text from an aready existing
font library would follow the same procedures mentioned above. The font and
pattern must be specified per layer. Multiple layering is NOT limited to text.
MARKEREDIT?® alows interactive modification of markers and markerset
filesthrough a series of invoked menus. MARKEREDI T is very helpful for
modifying custom symbols such as editing, saving, deleting, copying and many
other drawing requirements. Text can easily be added and manipulated within
MARKEREDIT. However, keep in mind that multiple layers are stored in
multiple patterns and often times multiple fonts. In the event that these markers
need to be trandated BACK to MicroSation through ARCIGDS?, the
FONTARC command pulls out ONE pattern at atime. The marker itsdf is
made of multiple layers but is not stored as one e ement. The output of the
marker is based on the referencing of multiple fonts and patterns.

MARKERLAYER <layer>

MARKEREDIT

ARCIGDS <in_cover><out_igds file><COMPLEX|NOCOMPLEX>
<VANILLA | ACODE | SOURCE> <in_igds seed file>
{in_cell_library}{in_property map}{in_features}{out_elements}

When creating a new marker, it isimportant to view the marker prior to
putting it into the markerset. Thisisto ensure that the parameters chosen were
executed correctly. Usethe MARKER?® command to view the marker. If the
marker is satisfactory, it can be placed in the markerset using the
MARKERPUT? command. Thefina step in creating a markerset is saving it.
ThisisVERY important - do not exit ArcPlot prior to executing the
MARKERSAVE? command.

MARKER <* | xy>

MARKERPUT <symbol>
MARKERSAVE <markerset.mrk>

11

Note: The user can view the newly created markerset using the following
command:

SYMBOLDUMP? <line | marker | shade | text> SCREEN
<dtart pattern #> <end pattern #>

Oncethe MARKERPUT command is executed, the above steps can be repeated
for each new symbol. When to save the markerset is at the user’ s discretion and
can be done at any time.

Once the markerset is complete, exit from the ArcPlot session and begin
with the creation of additional markers as needed.

Conclusion

Here at the Tri-Service CADD/GI S Technology Center, many
individuals provide support for the development of the Tri-Service Spatial Data
Standards (TSSDS). One of our primary functionsis to support the
manipulation, modification and creation of symbology in Arc/Info,
MicroStation and AutoCAD. Symbology is gathered from a variety of existing
symbols used by many installations and agencies. We a so custom design
symbals as the need arises. While researching the integration of symbology
from one CADD/GI S platform to ancther, we found that the documentation for
creation of symbols, provided by the Environmental Systems Research Ingtitute
(ESRI), was very good. However, we needed to integrate the use of other data
formats into these methods. Granted, there exists supporting documentation for
those methods aswell. But our goal was to bring these methods together in an
attempt to smplify these concepts. Given the amount of data sharing across
various CADD and GI S platforms, we wanted to create a smplified
methodology for symbol trandation here within The Center. We wanted also to
share our methods with the rest of the CADD/GIS community that may be
creating symbolsin this manner.

12

References Cited

1. Tri-Service CADD/GIS Technology Center; “The Tri-Service Spatid
Data Standards, Release 1.4, 1995. The product was a software
application developed to store, manage, and output geospatial data
standards. The application was released on CD-ROM, and is available
over the Internet from: “http://mr2.wes.army.mil”.

2. Bentley Systems, Inc., and Intergraph Corporation, “ MicroStation 2D
Graphics Leve 1, Course Guide’, 1994. MicroSation is aregistered
trademark of Bentley Systems, Inc. IGDS is atrademark of Intergraph
Corporation.

3. Environmental Systems Research Ingtitute, Inc., “On-Line Documentation:
Arc; ArcPlot; ArcEdit; Map Display, Arc/Info Query and Output”
Arc/Inforedease 7.0.3”, 1994. Arc/Info isaregistered trademark of
Environmental Systems Research Institute, Inc.

* Special thanks to the Tri-Service CADD/GIS Technology Center in Vicksburg,
Mississippi for their support of this paper and presentation.
* Special thanks given to the technical support staff at Environmental Systems

Research Ingtitute, Inc., in Redlands, California, Boston, Massachusetts., and
San Antonio, Texas.

13

APPENDI X

Sample AML's used in the creation

of the Arc/Info Symbology

14

Note: These AML’s have been modified to reflect general path names.

/* EDIT. AML : THIS WAS USED AFTER EXTRACTION OF MICROSTATION CELLS AND /*THE
CREATION OF A DGN. WE ARE UPDATING MARKERS FOR ENTRY INTO A FONT /*LIBRARY.

/¥ Jm Hoff and Kathy Riegelmann 10/6/95

&ECHO &ON

ae
display 9999

ec [getcover * -all]
dearcticid

draw

/* Thiscalculatesthe TIC ID’s into their proper order. The TIC sare
[* improperly trandated from Microstation into Arc/Info. A value of 10
[* isadded to each tic. Arc/Infowill not allow duplicatetic ids.

= all
cal $id = $id + 10

= $id=11
cal $id=3

s $id=12
ca $id=1

s $id=13
ca $id=2

s $id=10
cal $id=4

deTICID

15

[* EDIT.AML

/* In order to place a coverage into a font, the arcs must be calculated
[* toether 2 (for anglelines), 6 (fat lines) and 7 (solid fill).
[* Changethe $id to reflect your pattern of choice.

ef arc
= all
ca$ID=2,60r7

draw
[* Labelsare not necessary for processing of the pattern.
ef label

= dl
delete

/* Thiswill diminate the 'block’ that was created and trandated during
/* thel| GDSARC command. Thisarcis not needed.

ef arc
e one
delete

save
q

&ECHO & OFF

16

* MARKER _DF.aml - PUTS SYMBOLS BY FONT AND PATTERN
I* INTO A MARKER SET

/* Jim Hoff and Kathy Riegelmann 10/6/95

&ECHO &ON

ap
disp 9999 3

markerdelete all

markerset [response 'enter marker set'].mrk
markerfont [response 'enter font']
markerpattern [response 'enter pattern’]
markercolor [response ‘enter color']

[* to view symbol at alarger size

markersize [response 'enter symbol size (for viewing only)']
marker *

markersize [response 'enter size of marker']

markerput [response 'enter markersymbol']

symboldump marker screen { start symbol} {end symbol}
markersave [response 'enter markerset to save’].mrk

yes

quit

&ECHO & OFF

17

I MARKERINFO.aml: USED TO DISPLAY MARKER INFO AND CREATE A

I* WATCH FILE FOR DOCUMENTATION
I* Kathy Riegdmann and Jm Hoff 10/95
ap

&echo &on

markerdel ete all

[* setting a variable for the selected symbol set
&setvar LIBRARY [response 'Markerset Name]

[* creating awatch file for storage of markerinfo reference
&watch %LIBRARY %.wat

markerset %LIBRARY %

&doi =101 &to 500

MARKERINFO %i%

&end
&return

q

&watch & off

& echo & off

18

